3D Seismic Wave Propagation in Fault Zones - can Trapped Waves be Used for a Better Resolution of Fault Structures?

Gunnar Jahnke, Heiner Igel
Institut für Geophysik, LMU München

Yehuda Ben-Zion
University of Southern Calif., Los Angeles

Motivation

- The structure of Fault Zones at depth is not well understood.
- Fault Zone waves are strongly altered by the FZ properties.
- FZ modeling shows which FZ properties can be derived from the FZ wave field.
- For example, FZ waves can help to find out wether FZ segments are connected at depth or not.

Comparison with Analytical Solution

A Parameter Study

The influence of the following fault zone parameters on the wave field will be discussed:

- The source location
- A lateral fault disruption at depth
- A varying fault width
- A vertical gradient of the seismic properties
- A fault split into two segments towards the surface
- Small scale scattering

Effect of the Source Location

Faults with Lateral Disruption

Faults with a Bottleneck

Effect of a Vertical Gradient

Split Fault Model

Effect of Small-Scale Scattering

20 30 frequency [Hz]

30

10

0

0.5

40

0.7

0.6

0.8 time [s]

0.9

1.1

1

Conclusions

- Fault Zone waves can be accurately modeled by our method.
- FZ waves can help to find out whether FZ segments which are separated at the surface are connected at depth or not.
- FZ waves are strongly affected by
 - The source location
 - Lateral disruption at depth
- FZ waves are moderately affected by
 - A varying fault width.
- FZ waves are almost unaffected by
 - Realistic levels of a vertical gradient
 - Small scale scattering